Logarithmic Operators in Conformal Field Theory
نویسنده
چکیده
Conformal field theories with correlation functions which have logarithmic singularities are considered. It is shown that those singularities imply the existence of additional operators in the theory which together with ordinary primary operators form the basis of the Jordan cell for the operator L0. An example of the field theory possessing such correlation functions is given.
منابع مشابه
Logarithmic Correlation Functions in Liouville Field Theory
We study four-point correlation functions with logarithmic behaviour in Liouville field theory on a sphere, which consist of one kind of the local operators. We study them as non-integrated correlation functions of the gravitational sector of two-dimensional quantum gravity coupled to an ordinary conformal field theory in the conformal gauge. We also examine, in the (p, q) minimal conformal fie...
متن کاملar X iv : h ep - t h / 01 07 24 2 v 1 2 7 Ju l 2 00 1 Operator Product Expansion in Logarithmic Conformal Field Theory
In logarithmic conformal field theory, primary fields come together with logarithmic partner fields on which the stress-energy tensor acts non-diagonally. Exploiting this fact and global conformal invariance of two-and three-point functions, operator product expansions of logarithmic operators in arbitrary rank logarithmic conformal field theory are derived.
متن کاملGradient Flow in Logarithmic Conformal Field Theory
We establish conditions under which the worldsheet β-functions of logarithmic conformal field theories can be derived as the gradient of some scalar function on the moduli space of running coupling constants. We derive a renormalization group invariant version of this function and relate it to the usual Zamolodchikov C-function expressed in terms of correlation functions of the worldsheet energ...
متن کاملOperator Product Expansion in Logarithmic Conformal Field Theory
In logarithmic conformal field theory, primary fields come together with logarithmic partner fields on which the stress-energy tensor acts non-diagonally. Exploiting this fact and global conformal invariance of twoand three-point functions, operator product expansions of logarithmic operators in arbitrary rank logarithmic conformal field theory are investigated. Since the precise relationship b...
متن کاملTensor categories and the mathematics of rational and logarithmic conformal field theory
We review the construction of braided tensor categories and modular tensor categories from representations of vertex operator algebras, which correspond to chiral algebras in physics. The extensive and general theory underlying this construction also establishes the operator product expansion for intertwining operators, which correspond to chiral vertex operators, and more generally, it establi...
متن کامل